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Abstract— Image renovation in CT is a mathematical 
process that creates images from X-ray projection data gain 
at many different angles around the patient. Image 
rebuilding has a basic impact on image worth and therefore 
on radiation dose. Many techniques have been used to 
reconstruct the image and the commonly used algorithms 
are L1 and L1/2. L1 regularization algorithm has been 
normally used to solve the sparsity constrained problems. To 
enhance the sparsity constraint for better imaging 
performance, a promising route is to use the lp norm (0 < p 
< 1) and solve the lp minimization problem. ½ has been 
used widely as a replace with for p. In this paper survey the 
various methods in reconstruction of CT images are 
discussed. 
Keywords—Compressive sampling, half-threshold filtering, 
discrete gradient transform, pseudo-inverse transform. 
 

I. INTRODUCTION 
A CT scan, also called X-ray computed tomography (X-ray 
CT) or computerized axial tomography scan (CAT 
scan), makes use of computer-processed combinations of 
many X-ray images taken from different angles to produce 
cross-sectional (tomographic) images (virtual 'slices') of 
specific areas of a scanned object, allowing the user to see 
inside the object without cutting. Digital geometry 
processing is used to generate a three dimensional image of 
the inside of the object from a large series of two 
dimensional radiographic images taken around a single axis 
of rotation. Medical imaging is the most common 
application of X-ray CT. Its cross-sectional images are used 
for diagnostic and therapeutic purposes in various medical 
disciplines. In signal processing, Total variation denoising, 
also known as total variation regularization is a process, 
most often used in digital image processing, that has 
applications in noise removal. It is based on the principle 
that signals with excessive and possibly spurious detail have 
high total variation, that is, the integral of the 
absolute gradient of the signal is high. According to this 
principle, reducing the total variation of the signal subject to 
it being a close match to the original signal, removes 
unwanted detail whilst preserving important details such as 
edges. 
Stimulated by the theory of compressive sampling or 
compressive sensing (CS) [1], [2], the sparsity based 

computed tomography (CT) has been a hot topic for various 
applications such as dose reduction [3]. Because the x-ray 
decrease coefficient often varies gently within an anatomical 
component, and large changes are usually confine around 
borders of anatomical structures, the discrete gradient 
transform (DGT), a set of finite difference operators, has 
been widely utilized as a sparsifying action in CS-inspired 
CT reconstruction such as in, whose L1-norm is also 
referred to as the total variation (TV) [4], and the equivalent 
reconstruction techniques are called TV minimization. 
Recently, the soft-threshold nonlinear filtering [6] was 
proved to be a converging and efficient algorithm for the L1-
norm minimization regularized by a sparsity constraint. 
Unfortunately, because the DGT is non-invertible, the soft-
threshold algorithm cannot be directly applied for TV 
minimization. To address this challenge, soft-threshold 
filtering based pseudoinverse transforms for DGT was 
constructed and applied the soft -threshold filtering 
technique for image reconstruction from a limited number of 
Projections [6]. 
 

II. WIDELY USED METHODS 
A. NON LINEAR VARIATION IN RADIATION DOSE 

It is well known that the primary disadvantage of X-ray CT 
is ionizing radiation which may induce cancers and cause 
genetic damages with a probability related to the radiation 
dose. Thus, reducing the dose as low as possible is a general 
rule for practical medical applications. 
A.A. Statistical Assumption in X-ray image reconstruction  
The statistical assumption of the signal was the one of the 
oldest methods used in which, the radiation dose has been 
reduced. In any SIR method, an optimization criterion is set 
up based on the likelihood or probability density function 
(PDF) of the projection data. The maximum-likelihood 
solution has many desirable properties, one of which is that 
it is asymptotically the minimum variance solution among 
all unbiased estimators. The reduced image variance can be 
traded for reduced radiation dose at the same image noise 
level, thus achieving dose reduction. An important 
component of any SIR method therefore is the likelihood 
function of the raw data. It has been shown that the raw CT 
data follow a compound Poisson distribution; the exact PDF 
does not admit an analytic expression hence precludes its 
use in SIR method development. However, the result of each 
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approximation can be varied according to the statistical 
weightage values and hence might result in varying radiation 
dose. 
A.B. Local ROI reconstruction via FBP and BPF  
In the field of medical applications, an efficient way for CT 
image reconstruction has been to reducing the dose as low as 
possible, (a general rule for practical medical applications) 
or reduce the region or volume to be imaged. To reconstruct 
a long object such as a patient, the usage of Filtered Back 
Projection (FBP) as well as the formula for Back Filtered 
Projection (BPF), derived from Katsevich’s FBP formula for 
standard helical cone-beam CT. The key step is to choose a 
filtering direction based on the general condition. A natural 
choice is the direction of the generalized PI-segment, also 
referred as a chord. The modified BPF formula was derived 
from the FBP by interchanging the order of the Hilbert 
filtering and back projection operation in Katsevich’s FBP 
formula thus, enabling to reconstruction of the object only 
from the minimum data. Since the chord discussed here is a 
2D locus, we can only obtain the fan beam reconstruction 
formulas which are not regarded as a best practice for CT 
image reconstruction since, the Cone beam geometry 
provides a better angular projection as well as 3D 
reconstructed image. However introduction of combining 
both global as well as local datasets for image reconstruction 
has been considered as an innovative and novel method. 

B. NOISE REMOVAL ALGORITHMS 
The presence of noise in image is unavoidable. It may be 
introduced by the image formation process, image recording, 
image transmission etc. In practice, to estimate a true signal 
in noise, the most frequently used methods are based on the 
least square criteria. A constrained minimization algorithm 
has been derived as a time dependant nonlinear PDE where 
the constraints are determined by noise statistics. The 
procedure is sole dependent on the L2 norm form. 
Experimental results when added Gaussian white noise to 
the image and after denoising it shows that the procedure 
beats the human eye. The use of more constraints in this 
procedure will yield more details of the solution. Instead of 
L2 norm, L1 norm can also be used. But In comparison to 
the least square methods, the L1 estimation is non linear and 
computationally complex. The L1 norm is usually avoided 
since the variation of some expressions in the algorithm and 
produces singular distributions as coefficients which can’t 
be handled in a purely algebraic framework. 

C. SPARSITY CONSTRAINTS 
A sparse approximation is a sparse vector that approximately 
solves a system of equations. Techniques for finding sparse 
approximations have found wide use in applications such as 
image processing, audio processing, biology, and document 
analysis. 
C.A. Reconstruction of Sparse signals via Nonconvex 

Minimization 

Reconstruction of signals with sparse values has always 
been challenging since we have to reconstruct the image 
from sparse values (null values). The sparser the equation 
gets, the easier it is to solve the equation since more linear 
measurements will be available for a more sparse equation. 
Several authors have cited that using the traditional sampling 
theory, (fs>2fm) it is possible to reconstruct exactly a sparse 
signal from fewer linear measurements. The methods used 
involve computing the signal of minimum L1 norm among 
those having the given measurements. To show that by 
replacing the L1 norm with the Lp norm with p<1, exact 
reconstruction is possible with substantially fewer 
measurements [9], [11]. Many researches have been done on 
the subject of reconstruction of sparse signals from a limited 
number of linear measurements  
From the equation below that defines sparsity  
                                 X ϵ CN ,y = фx 

C is a constant not depending on the K (sparsity of signal x) 
and N (order of the measurement matrix) such that whenever 
M > CK logN, the signal x can be reconstructed exactly with 
very high probability. For better results when the L1 norm is 
replaced by Lp (0 < p < 1), the resulting optimization will 
not be convex and hence is considered as intractable 
problem by mathematicians. But recent studies have shown 
that a local minimizer can be constructed that produce exact 
reconstruction of sparse signals with many fewer 
measurements than when p = 1. 
C.B. Image recovery from Incomplete Fourier measurements 
The major problem in imaging applications is the task of 
trying to reconstruct an image with the smallest possible set 
of Fourier samples. Compressive sensing points to way of 
exploiting inherent sparsity in such images for accurate 
recovery. Traditional CS approaches to this problem consist 
of 
solving total-variation (TV) minimization programs with 
Fourier measurement constraints or other variations thereof. 
Since the horizontal and vertical differences of a medical 
image are each more sparse or compressible than the 
corresponding TV image, CS methods will be more 
successful in recovering these differences individually. If the 
signal or the image is sparse in some domain, then one can 
reconstruct the signal exactly with significantly fewer 
Fourier coefficients than originally thought thus, reducing 
the number of measurements that devices take in order to 
generate high quality image. By using the fact the Fourier 
transform of the gradients of an image are precisely equal to 
a diagonal transformation of the Fourier transform of the 
original image, we utilize CS methods to directly recover the 
horizontal and vertical differences of our desired image. 
Then, we employ one of two techniques for recovering the 
original image from our edge estimates. This second step 
can be done by either solving a simple penalized least-
square (LS) optimization problem or by utilizing a modified 
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Poisson solver, former taking more computation time, latter 
being considered as an efficient approach. The method 
solely proposes that instead of reconstructing an image by 
reducing Total Variation, the exact image can be 
reconstructed separately reconstructing the gradients and 
then solving for the images. This allows one to reconstruct 
the image with a far fewer number of measurements than 
required by the TV minimization method. 
The algorithm used here first modifies the original Fourier 
measurements to obtain Fourier measurements of the 
corresponding vertical and horizontal edge images. It then 
utilizes some algorithm from the suite of CS recovery 
routines to recover the edge images. Finally, it recovers the 
original image from the estimates of its edges using one of 
several specialized integration techniques. Image gradients 
are estimated from the given fourier observations by the 
following equations. 
                (ƑὩ Xx)k = (1- e-2πiῳx,k

 /N) (ƑὩX)k  

                      (ƑὩ Xy)k = (1- e-2πiῳy,k
 /N) (ƑὩX)k 

The Total Variation technique fails as it needs at least 3 to 5 
times the fourier coefficients that of the sparse values. Hence 
the latter method has been efficient in recovering the images 
from a lesser number of linear measurements and thus 
minimizing the computational time for the image recovery. 

D. THRESHOLDING ALGORITHMS 
Thresholding is a process of converting a grayscale input 
image to a bi-level image by using an optimal threshold. The 
purpose of thresholding is to extract those pixels from some 
image which represent an object (either text or other line 
image data such as graphs, maps). Though the information is 
binary the pixels represent a range of intensities. Thus the 
objective of binarization is to mark pixels that belong to true 
foreground regions with a single intensity and background 
regions with different intensities. For a thresholding 
algorithm to be really effective, it should preserve logical 
and semantic content. 
D.A. Fast Iterative Shrinkage Thresholding Algorithm for 

Linear Inverse Problems 
Linear inverse problems arise in a wide range of applications 
including the image reconstruction. A large body of 
mathematical algorithms and formulae are required to solve 
this problem. A classical approach to solve this problem is 
the least square (LS) approach. But the class of iterative 
shrinkage thresholding algorithms (ISTA), an extension of 
classical gradient algorithm, is attractive due to its simplicity. 
However, because of the usage of the dense matrix data, 
they tend to converge slowly and hence a worst case 
complexity result is also to be considered. Recent studies 
have led to a Fast ISTA keeping the simplicity of the ISTA 
and a convergence rate far better than the former and an 
improved complexity result. 
D.B. Iterative Hard thresholding & Compressive sensing 

Compressive sensing literally means sampling the signal 
below the Nyquist rate (Sampling theorem) [12], [13]. Most 
signals in real world are not exactly sparse but have very 
well approximated values.  The iterative hard thresholding is 
a very simple iterative procedure starting with zero value 
and uses the iteration  
                     Xn+1 = Hk (X

n + фT (y – фx
n) ) 

Where HK(a) is the non-linear operator that sets all but the 
largest (in magnitude) K elements of a to zero (non-
uniqueness issues being avoided using random or 
deterministic heuristics). It has been proven from studies 
that the algorithm has near optimal performance whenever 
the matrix Φ has a small restricted isometry constant δk such 
that  
                 (1 – ᵹk) ǁXǁ2

2 ≤ ǁ фxǁ
2
2 ≤ (1 + ᵹk) ǁXǁ

2
2 

holds for all vectors x with no-more than K non-zero 
elements. 
But despite its simplicity, the algorithm is restricted by 
isometric constants and the matrix needs to be normalized to 
guarantee the stability. However the use of L2 norm for 
normalizing the matrix isn’t much appreciated in the image 
processing field since it provides only NP hard problems. 
D.C. L1/2 Regularization 
Recent researches have shown that a promising direction is, 
instead of using L1 norm forms, the Lp norm (0 < p < 1) to 
improve the sparsity of the image, but leads to Lp 
regularization problem. Based on a phase diagram study, Xu 
et al showed that the lesser the value of the p, the more 
sparser the solution to get. The recent trend is substituting p 
= ½. The convergence of the L1/2 iterative half thresholding 
algorithm [9], [10] has been considered as a solution for the 
L1/2 regularization problem. Hence the formula for half 
algorithm. 
           X(n+1) = Hλµ,1/2 (x

(n) - µAT (A x(n) – y )) 
The convergence of the half algorithm has been partially 
analyzed which implies that it can converge to a stationary 
point when the step size parameter is too small. In the 
convergence of algorithm, we may be more interested to 
know if it converges to a global minimizer or a local 
minimizer point. However the convergence of the algorithm 
to a local minimizer of L1/2 regularization has been 
considered more reliable even when if leads to non convex 
non smooth optimization problem that is difficult to solve 
faster and efficiently. Through the simulations and 
comparison with hard thresholding and soft thresholding 
algorithms, the iterative half thresholding algorithm is 
adaptive and free from choice of parameters. We have 
verified the convergence of the proposed algorithm, and 
applied the algorithm, together with other competitive 
regularization algorithms, to a series of problems in signal 
processing. The algorithm is fast, effective, and very 
efficient for k–sparsity problems. L1/2 regularization shows 
a significantly stronger sparsity-promoting property than L1 
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regularization in the sense that it allows getting more sparse 
solutions of a problem and recovering a sparse signal from 
fewer samplings, as compared with L1 regularization. 
 D.D. Simultaneous Algebraic Reconstruction Method 

(SART)-Type Half Threshold Filtering  
Simultaneous algebraic reconstruction technique (SART) 
[14] type half-threshold filtering framework to solve the 
computed tomography reconstruction problem. In the 
medical imaging field, the discrete gradient transform (DGT) 
is widely used to define the sparsity. The DGT is 
noninvertible and it cannot be applied to half-threshold 
filtering for CT reconstruction.  The results show that the 
SART-type half-threshold filtering algorithms have great 
potential to improve the reconstructed image quality from 
few and noisy projections. The main drawback of iterative 
methods is the relatively high demand for computational 
time. Several approaches have been developed to accelerate 
the computation of iterative methods. A popular mechanism 
is the ordered subsets (OS) [15] algorithms. To improve the 
convergence speed of OS algorithms and to improve the 
quality of reconstructed images, use SS-SART adjusts the 
OS level at each iteration.  
  

III.     CONCLUSIONS 
A number of techniques for CT image reconstruction have 
been discussed and compared. There are also many 
interesting methods that are discussed in this paper and there 
will be many such methods which can improve the analysis 
process in one or the other way. Many methods like noise 
removal algorithm and thresholding algorithm and method 
are reviewed. While some were simple in format, but taking 
more computation time, algorithms like fast iterative 
thresholding algorithms were facing the issue of 
convergence. The normalization distribution of the 
equivalent mathematical representation of the raw data has 
been a key note in the image reconstruction problem. For 
better results and fast computing, L1/2 thresholding 
algorithms have been the newest trend. To use simultaneous 
algebraic reconstruction techniques and sequence subsets 
simultaneous algebraic reconstruction techniques (SS-SART) 
for the reconstruction in better improve the quality of images. 
The reconstruction of CT image from incomplete Fourier 
data set also has attracted the scientists and has succeeded in 
the same. 
We can see that majority depend on the social networking 
sites to get their valued information. So by analysing the 
reviews on these blogs will yield a better understanding of 
techniques. Each method has faced issues like convergence, 
sparsity, NP hard problems etc, and solution of each has led 
to another technique which is considered more reliable than 
the former. 
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