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Abstract— Image renovation in CT is a mathematicalcomputed tomography (CT) has been a hot topic doious
process that creates images from X-ray projectiatadyain  applications such as dose reduction [3]. Becausexitay
at many different angles around the patient. Imagdecrease coefficient often varies gently withiraaatomical
rebuilding has a basic impact on image worth angréfiore component, and large changes are usually confioandr
on radiation dose. Many techniques have been ueed Horders of anatomical structures, the discrete ignad
reconstruct the image and the commonly used alyost transform (DGT), a set of finite difference operatohas
are L1 andLlL,; L1 regularization algorithm has been been widely utilized as a sparsifying action in @Spired
normally used to solve the sparsity constrainedfams. To CT reconstruction such as in, whose L1-norm is also
enhance the sparsity constraint for better imagingeferred to as the total variation (TV) [4], ane tquivalent
performance, a promising route is to use the Ipom@® < p  reconstruction techniques are called TV minimizatio
< 1) and solve the Ip minimization problem. ¥2 haem Recently, the soft-threshold nonlinear filtering] [&as
used widely as a replace with for p. In this papervey the proved to be a converging and efficient algorittamthe L1-
various methods in reconstruction of CT images areorm minimization regularized by a sparsity constra

discussed. Unfortunately, because the DGT is non-invertible soft-

Keywords—Compressive sampling, half-threshold filtering, threshold algorithm cannot be directly applied oW

discrete gradient transform, pseudo-inverse transi minimization. To address this challenge, soft-thodd
filtering based pseudoinverse transforms for DGTs wa

I. INTRODUCTION constructed and applied the soft -threshold filigri

A CT scan, also called X-ray computed tomographygX technique for image reconstruction from a limitearber of
CT) orcomputerized axial tomography scan (CATProjections [6].

scan), makes use of computer-processed combinatibns

many X-ray images taken from different angles todoice [I. WIDELY USED METHODS
cross-sectional (tomographic) images (virtual édiy of A. NON LINEAR VARIATION IN RADIATION DOSE
specific areas of a scanned object, allowing ther ts see It is well known that the primary disadvantage ofay CT
inside the object without -cutting. Digital geometryis ionizing radiation which may induce cancers aadise
processing is used to generate a three dimensioagke of genetic damages with a probability related to thaiation
the inside of the object from a large series of twdose. Thus, reducing the dose as low as possiblgéneral
dimensional radiographic images taken around alesenxqgs rule for practical medical applications.

of rotation. Medical imagingis the most commonrA.A. Statistical Assumption in X-ray image recandtion
application of X-ray CT. Its cross-sectional images used The statistical assumption of the signal was the ohthe
for diagnostic and therapeutic purposes in varimeglical oldest methods used in which, the radiation dose lwen
disciplines. In signal processing, Total variatidenoising, reduced. In any SIR method, an optimization ciiteris set
also known as total variation regularization is @gess, up based on the likelihood or probability densitydtion
most often used in digital image processing, thas h(PDF) of the projection data. The maximum-likelidoo
applications in noise removal. It is based on thiaciple solution has many desirable properties, one of wkscthat
that signals with excessive and possibly spuriaiaidhave it is asymptotically the minimum variance solutiamong
high total variation, that is, the integral of theall unbiased estimators. The reduced image variaanebe
absolute gradient of the signal is high. Accordiogthis traded for reduced radiation dose at the same imagse
principle, reducing the total variation of the sijsubject to level, thus achieving dose reduction. An important
it being a close match to the original signal, rge® component of any SIR method therefore is the Hiasd
unwanted detail whilst preserving important detailgh as function of the raw data. It has been shown thatrétw CT
edges. data follow a compound Poisson distribution; thaaPDF
Stimulated by the theory of compressive sampling does not admit an analytic expression hence presliis
compressive sensing (CS) [1], [2], the sparsity edas use in SIR method development. However, the reswdach
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approximation can be varied according to the siedis
weightage values and hence might result in varyaaiiation
dose.

A.B. Local ROI reconstruction via FBP and BPF

In the field of medical applications, an efficiemfy for CT

image reconstruction has been to reducing the dodaw as
possible, (a general rule for practical medicalliaptions)

or reduce the region or volume to be imaged. Tonstuct
a long object such as a patient, the usage ofr&dt®ack
Projection (FBP) as well as the formula for Backefed

Projection (BPF), derived from Katsevich's FBP fatenfor

standard helical cone-beam CT. The key step ihtmse a
filtering direction based on the general conditiénnatural
choice is the direction of the generalized Pl-segmalso
referred as a chord. The modified BPF formula wasved

from the FBP by interchanging the order of the Elitb
filtering and back projection operation in Katsdwe FBP

formula thus, enabling to reconstruction of theeabjonly
from the minimum data. Since the chord discussed lsea
2D locus, we can only obtain the fan beam recoostm

formulas which are not regarded as a best pra@ic€T

Reconstruction of signals with sparse values hasys
been challenging since we have to reconstruct miege
from sparse values (null values). The sparser th&tton
gets, the easier it is to solve the equation smoee linear
measurements will be available for a more sparsetem.
Several authors have cited that using the traditisampling
theory, (fs>2fm) it is possible to reconstruct ékaa sparse
signal from fewer linear measurements. The methcus
involve computing the signal of minimum L1 norm amgo
those having the given measurements. To show that b
replacing the L1 norm with the Lp norm with p<1,aek
reconstruction is possible with substantially fewer
measurements [9], [11]. Many researches have bees on
the subject of reconstruction of sparse signalsfeolimited
number of linear measurements
From the equation below that defines sparsity

XCYy = ¢,
C is a constant not depending on the K (sparsitsigrial x)
and N (order of the measurement matrix) such ttnensver
M > CK logN, the signal x can be reconstructed dyaaith
very high probability. For better results when tienorm is

image reconstruction since, the Cone beam geomereplaced by Lp (0 < p < 1), the resulting optimiaatwill

provides a better angular projection as well
reconstructed image. However introduction of corimgn
both global as well as local datasets for imagenstuction
has been considered as an innovative and novebuheth
B. NOISE REMOVAL ALGORITHMS

The presence of noise in image is unavoidable.ay ime
introduced by the image formation process, imagerding,
image transmission etc. In practice, to estimateia signal
in noise, the most frequently used methods aredbasehe
least square criteria. A constrained minimizatidgoethm
has been derived as a time dependant nonlinearvi#izie
the constraints are determined by noise statistidse

as 3ot be convex and hence

is considered as intractabl
problem by mathematicians. But recent studies tsnsvn
that a local minimizer can be constructed that pcedexact
reconstruction of sparse signals with many fewer
measurements than when p = 1.

C.B. Image recovery from Incomplete Fourier measiaets
The major problem in imaging applications is thektaf
trying to reconstruct an image with the smallestsilnle set

of Fourier samples. Compressive sensing pointsayp of
exploiting inherent sparsity in such images for uaate
recovery. Traditional CS approaches to this probtemsist

of

procedure is sole dependent on the L2 norm forrsolving total-variation (TV) minimization programsith

Experimental results when added Gaussian whiteentmis
the image and after denoising it shows that thecgatare
beats the human eye. The use of more constraintkisn
procedure will yield more details of the solutidnstead of
L2 norm, L1 norm can also be used. But In compariso
the least square methods, the L1 estimation idinear and
computationally complex. The L1 norm is usually igeal
since the variation of some expressions in therdlgo and
produces singular distributions as coefficients cwhcan't
be handled in a purely algebraic framework.

C. SPARSITY CONSTRAINTS
A sparse approximation is a sparse vector thatejrpately
solves a system of equations. Techniques for fmdiparse
approximations have found wide use in applicatisunsh as
image processing, audio processing, biology, ardient
analysis.

Fourier measurement constraints or other variatibaseof.
Since the horizontal and vertical differences ofnadical
image are each more sparse or compressible than the
corresponding TV image, CS methods will be more
successful in recovering these differences indiilgu If the
signal or the image is sparse in some domain, timencan
reconstruct the signal exactly with significantlgwer
Fourier coefficients than originally thought thugducing
the number of measurements that devices take ierdad
generate high quality image. By using the fact Hoerier
transform of the gradients of an image are pregisglal to

a diagonal transformation of the Fourier transfasmthe
original image, we utilize CS methods to directtigaver the
horizontal and vertical differences of our desirathge.
Then, we employ one of two techniques for recoggtime
original image from our edge estimates. This secsteg

C.A. Reconstruction of Sparse signals via Nonconvican be done by either solving a simple penalizebtie

Minimization
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square (LS) optimization problem or by utilizingrendified
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Poisson solver, former taking more computation titaker Compressive sensing literally means sampling thymadi
being considered as an efficient approach. The adethbelow the Nyquist rate (Sampling theorem) [12],][180st
solely proposes that instead of reconstructingnaage by signals in real world are not exactly sparse buteheery
reducing Total Variation, the exact image can bwell approximated values. The iterative hard thoéding is
reconstructed separately reconstructing the grégliamd a very simple iterative procedure starting withazealue

[V8]-Issue-10, Oct- 2016]

then solving for the images. This allows one tocorestruct

the image with a far fewer number of measuremems t

required by the TV minimization method.

The algorithm used here first modifies the origiRalurier
measurements to obtain Fourier measurements of
corresponding vertical and horizontal edge imadethen

and uses the iteration

K= H (X" + T (v - b))
Where HK(a) is the non-linear operator that setbat the
largest (in magnitude) K elements of a to zero {non
tuniqueness issues being avoided using random or
deterministic heuristics). It has been proven fretadies

utilizes some algorithm from the suite of CS reggve that the algorithm has near optimal performancenekier

routines to recover the edge images. Finally, govers the
original image from the estimates of its edges gigine of

several specialized integration techniques. Imagelignts
are estimated from the given fourier observatiogsthe

following equations.

Ko Xk = (1- €% ™) (FaX)k
Fo Xy = (1- €7, ™) (FaX)«

The Total Variation technique fails as it needteast 3 to 5
times the fourier coefficients that of the sparakigs. Hence
the latter method has been efficient in recovetivggimages

the matrix® has a small restricted isometry cons@ansuch
that

(1 50 IXI2 < 1 % < (1 +50) IXIZ,
holds for all vectors x with no-more than K noneer
elements.
But despite its simplicity, the algorithm is rested by
isometric constants and the matrix needs to be aliared to
guarantee the stability. However the use of L2 ndom
normalizing the matrix isn't much appreciated ie image
processing field since it provides only NP hardgbems.

from a lesser number of linear measurements and thD.C. Ly, Regularization

minimizing the computational time for the imageaeery.
D. THRESHOLDING ALGORITHMS
Thresholding is a process of converting a graysagbet
image to a bi-level image by using an optimal thadd. The
purpose of thresholding is to extract those pikelsn some
image which represent afject(either text or other line
image data such as graphs, maps). Though the iafammis
binary the pixels represent a range of intensifidsis the
objective of binarization is to mark pixels thatdrg to true
foreground regions with a single intensity and lgaokind
regions with different intensities. For a thresliodd
algorithm to be really effective, it should presenogical
and semantic content.
D.A. Fast lterative Shrinkage Thresholding Algamitifor
Linear Inverse Problems
Linear inverse problems arise in a wide range pfiegations
including the image reconstruction. A large body
mathematical algorithms and formulae are requicedolve
this problem. A classical approach to solve thisbpgm is
the least square (LS) approach. But the class evétive
shrinkage thresholding algorithms (ISTA), an exiemsof
classical gradient algorithm, is attractive dué@gscimplicity.

Recent researches have shown that a promisingtidings,
instead of using L1 norm forms, the Lp norm (0 < fb) to
improve the sparsity of the image, but leads to
regularization problem. Based on a phase diagradysiXu
et al showed that the lesser the value of the @,ntiore
sparser the solution to get. The recent trend listguting p
= %. The convergence of the L1/2 iterative halé#molding
algorithm [9], [10] has been considered as a smhutor the
L1/2 regularization problem. Hence the formula foalf
algorithm.
Xt = Hku,l/2(x(n) -uAT (A X —y))
The convergence of the half algorithm has beenighigrt
analyzed which implies that it can converge toai@hary
point when the step size parameter is too smallthign
convergence of algorithm, we may be more interested
know if it converges to a global minimizer or a dbc
ominimizer point. However the convergence of theoetgm
to a local minimizer of L1/2 regularization has bee
considered more reliable even when if leads to cmmvex
non smooth optimization problem that is difficudt $olve
faster and efficiently. Through the simulations and
comparison with hard thresholding and soft thredingl

Lp

However, because of the usage of the dense madtix, d algorithms, the iterative half thresholding alglonit is
they tend to converge slowly and hence a worst caadaptive and free from choice of parameters. Weehav
complexity result is also to be considered. Rectutlies verified the convergence of the proposed algorittamd
have led to a Fast ISTA keeping the simplicity led ISTA  applied the algorithm, together with other competit
and a convergence rate far better than the formdram regularization algorithms, to a series of problamsignal
improved complexity result. processing. The algorithm is fast, effective, aneryv
D.B. Iterative Hard thresholding & Compressive sags efficient for k—sparsity problems. L1/2 regularipat shows

a significantly stronger sparsity-promoting progdttan L1
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regularization in the sense that it allows gettimgre sparse
solutions of a problem and recovering a sparseasifyjom
fewer samplings, as compared with L1 regularization
D.D. Simultaneous Algebraic Reconstruction Method2]
(SART)-Type Half Threshold Filtering
Simultaneous algebraic reconstruction technique RBA
[14] type half-threshold filtering framework to sel the [3]
computed tomography reconstruction problem. In the
medical imaging field, the discrete gradient transf (DGT)
is widely used to define the sparsity. The DGT is
noninvertible and it cannot be applied to half-tald
filtering for CT reconstruction. The results showat the
SART-type half-threshold filtering algorithms haygeat
potential to improve the reconstructed image qudliom
few and noisy projections. The main drawback ofatige
methods is the relatively high demand for compatei
time. Several approaches have been developed étesaie
the computation of iterative methods. A popular hagism
is the ordered subsets (OS) [15] algorithms. Torawe the
convergence speed of OS algorithms and to imprbee t
quality of reconstructed images, use SS-SART asljthst
OS level at each iteration.

[1]

[4]

[5]

[6]

[7]

[Il. CONCLUSIONS
A number of techniques for CT image reconstructiave  [8]
been discussed and compared. There are also many
interesting methods that are discussed in thisrpeape there
will be many such methods which can improve theyem
process in one or the other way. Many methods titise
removal algorithm and thresholding algorithm andthud
are reviewed. While some were simple in format, taling
more computation time, algorithms like fast iterati
thresholding algorithms were facing the
convergence. The normalization distribution of the
equivalent mathematical representation of the rava dhas
been a key note in the image reconstruction probleon
better
algorithms have been the newest trend. To use Enadus
algebraic reconstruction techniques and sequenbsetsl
simultaneous algebraic reconstruction techniqu&s8RT)
for the reconstruction in better improve the qyabt images.
The reconstruction of CT image from incomplete Fkeur
data set also has attracted the scientists angutaseded in
the same.
We can see that majority depend on the social rm&tag
sites to get their valued information. So by analysthe
reviews on these blogs will yield a better underditag of
techniques. Each method has faced issues like opevee,
sparsity, NP hard problems etc, and solution ohédwaas led
to another technique which is considered more bigighan
the former.

9]
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results and fast computing, L1/2 threshgldin [11]T. Blumensath and M. E. Davies,
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